The Super-FRS Project at GSI

Martin Winkler for the Super-FRS working group CERN, 30.10.2002

- FRS facility
- The concept of the new facility
- The Super-FRS and its branches
- Summary

Projectile Fragmentation and Projectile Fission

Projectile Fragmentation

Coulomb Excitation in Peripheral Collisions

K.Sümmerer

Kinematics of Exotic Nuclei produced in Projectile Fragmentation and Projectile Fission

Bp- ΔE -Bp Separation Method

Experiments with the FRS

• Nuclear structure and reactions

Explore the properties of dripline nuclei, search for new structures and shells, study hadronic atoms

• Nuclear astrophysics and applications

Exotic nuclei are the key to understand the formation of elements in the universe

• Atomic interactions of heavy ions with matter Basic atomic collision studies and applications PET, isotope separation, stopping of fragments in a

The Present Secondary Beam Facility at GSI

Limitations of the facility:

- Low primary beam intensity (e.g. 10^{9 238}U /s)
- Low transmission for projectile fission fragments (4-10% at the FRS)
- Low transmission for fragments into the storage ring and to the experimental areas
- Limited maximum magnetic rigidity

The Energy-Z Operating Domain for In-Flight Separation

	Βρ _{max}	∆p/p	$\Delta \Phi_{X}$	$\Delta \Phi_{y}$	resolving power
FRS	18 Tm	1.0 %	±13 mrad	±13 mrad	1500
Super-FRS	20 Tm	2.5 %	±40 mrad	±20 mrad	1500

Transmission Gain for Fission Products

Rates for Exotic Nuclei at the Super-FRS

Ion-Optical Design of the Super-FRS

	at F1	at F2	at F4	at F6
(x,x)	-3.28	2.00	1.46	1.60
(x,a)	0	0	0	0
(x,p)	5.05	0	-4.48	0
(a,x)	0.25	-0.59	-0.68	-0.66
(a,p)	0	0	0	0
(y,y)	-2.55	1.90	2.84	1.94
(y,b)	0	0	0	0
(b,y)	0.12	-0.21	-0.36	-0.67

Separation performance using two degrader stages

Features of two degrader stages

- •Reduction of contaminants from fragments produced in the degrader
- •Optimization of the fragment rate on detectors in the main-separator
- •Introduction of another separation cut in the A-Z plane
- •Possible usage of pre- and main-separator for secondary reaction studies

Separation Characteristics for ¹⁰⁰Sn with 1 and 2 Degrader Stages

The Super-FRS and it's Facility

The High-Energy Branch

Reaction	Physics goals	Ions/s
Knockout	Unbound states, properties beyond the driplines	1-10
	Single particle structure	0.1-10
Electromagnetic	Single particle structure	0.1-10
Excitation	Soft dipole modes	1-10
	Giant dipole resonance	100
	Giant quadrupole strength	10^{3}
	B(E2), evolution of shell structure	1-10
	Astrophysics, rp-process, (p,γ) S-factor	10^{3}
Fission	Shell structure, dynamical properties	10^{3}
Fragmentation	γ spectroscopy, high spin	10
Multifragmentation	EOS, phase transitions	10 ³
(p,n)	Spin-dipole exc., neutron skin, GT strength	$10^3 - 10^4$
Quasi-free scattering	Single particle structure	10
Spallation	Reaction theory (applications, e.g. hybrid reactors)	104

Instrumentation of the Low-Energy Branch

Instrumentation for Experiments with Stored Beams

Summary

- Large momentum and angular acceptance
- Super-FRS consists of three branches feeding caves for different types of experiments
- High secondary-beam transmission to all experimental areas and into the CR/NESR
- Increase of secondary beam intensities of more than 10000 compared to now
- Super-FRS needs more than one separation stage to provide sufficient background reduction
- Unambigious fragment identification (q=Z)
 - Higher separation quality
 - Higher sensitivity and selectivity
 - Physics with single exotic atoms

Intensity distribution in the preseparator of Super-FRS

The GSI Upgrade

